⭐⭐⭐ Единый реферат-центр

Главная » Рефераты » Текст работы «Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП»


Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП

Содержание
Введение
1. Сущность и преимущества электронной цифровой подписи
2. RSA как основа ЭЦП
Заключение
Список литературы

Дисциплина: Разное
Вид работы: контрольная работа
Язык: русский
ВУЗ: ---
Дата добавления: 13.03.2018
Размер файла: 32 Kb
Просмотров: 421
Загрузок: 2

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП (предмет: Разное) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

Текст работыСкачать файл








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Разное


Краткое описание документа: Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП контрольная работа по дисциплине Разное. Понятие, сущность и виды, 2017.

Как скачать? | + Увеличить шрифт | - Уменьшить шрифт






контрольная работа по дисциплине Разное на тему: Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП; понятие и виды, классификация и структура, 2016-2017, 2018 год.

ВВЕДЕНИЕ
Электронная цифровая подпись - реквизит электронного документа, предназначенный для защиты данного электронного документа от подделки, полученный в результате криптографического преобразования информации с использованием закрытого ключа электронной цифровой подписи и позволяющей идентифицировать владельца сертификата ключа подписи, а также установить отсутствие искажений информации в электронном документе. Электронная цифровая подпись в электронном документе равнозначна собственноручной подписи в документе на бумажном носителе при одновременном соблюдении определённых следующих условий. При этом электронной документ с электронной цифровой подписью имеет юридическое значение при осуществлении отношений, указанных в сертификате ключа подписи.
В скором будущем в общепринятую практику войдет заключение договора в электронной форме, который будет иметь такую же юридическую силу, как и письменный документ. Для этого он должен иметь механизм электронной цифровой подписи, подтверждаемый сертификатом. Владелец сертификата ключа подписи владеет закрытым ключом электронной цифровой подписи, что позволяет ему с помощью средств электронной цифровой подписи создавать свою электронную цифровую подпись в электронных документах (подписывать электронные документы). Для того, чтобы электронный документ могли открыть и другие пользователи, разработана система открытого ключа электронной подписи.
Цель данной работы - рассмотреть технологию функционирования ЭЦП в алгоритме PSA.
1. Сущность и преимущества электронной цифровой подписи
Электронная цифровая подпись (ЭЦП) используется физическими и юридическими лицами в качестве аналога собственноручной подписи для придания электронному документу юридической силы, равной юридической силе документа на бумажном носителе, подписанного собственноручной подписью правомочного лица и скрепленного печатью.
Электронный документ - это любой документ, созданный при помощи компьютерных технологий и хранящийся на носителях информации, обрабатываемых при помощи компьютерной техники, будь то письмо, контракт или финансовый документ, схема, чертеж, рисунок или фотография.
ЭЦП - это программно-криптографическое средство, которое обеспечивает:
проверку целостности документов;
конфиденциальность документов;
установление лица, отправившего документ.
Использование ЭП позволяет:
значительно сократить время, затрачиваемое на оформление сделки и обмен документацией;
усовершенствовать и удешевить процедуру подготовки, доставки, учета и хранения документов;
гарантировать достоверность документации;
минимизировать риск финансовых потерь за счет повышения конфиденциальности информационного обмена;
построить корпоративную систему обмена документами.
Подделать ЭП невозможно - это требует огромного количества вычислений, которые не могут быть реализованы при современном уровне математики и вычислительной техники за приемлемое время, то есть пока информация, содержащаяся в подписанном документе, сохраняет актуальность. Дополнительная защита от подделки обеспечивается сертификацией Удостоверяющим центром открытого ключа подписи.
С использованием ЭП работа по схеме "разработка проекта в электронном виде - создание бумажной копии для подписи - пересылка бумажной копии с подписью - рассмотрение бумажной копии - перенос ее в электронном виде на компьютер" уходит в прошлое.
В законе 2011 г. появилась возможность подписывать электронной подписью документы, обращение которых не регламентировано законами прямого действия. Под регламентацию подпадают немногие документы: выписки из кадастра недвижимости и Единого госреестра прав, счета-фактуры и др. Новый же закон в теории позволит заверять у нотариусов в электронном виде и выписки из свидетельства о браке, доверенности и т. п. Правда, пока не ясно, подписи какого из трех форматов будут принимать госструктуры и какие конкретно документы можно ими подписывать. Закон не установил, какой тип подписи может использовать то или иное ведомство, в каком формате должен подписываться гендиректор компании, в каком — главный бухгалтер, а в каком — гражданин. Для органов власти виды ЭП определит правительство, а для делового и бытового общения граждане и юридические лица вправе сами выбирать вид подписи.
Электронные подписи разделяются законом 2011 г. на три вида.
Простые подписи создаются с помощью кодов, паролей и других инструментов, которые позволяют идентифицировать автора документа, но не позволяют проверить его на предмет наличия изменений с момента подписания.
Усиленная неквалифицированная подпись создана с использованием криптографических средств и позволяет определить не только автора документа, но проверить его на наличие изменений. Для создания таких подписей может использоваться сертификат неаккредитованного центра, можно также вообще обойтись без сертификата, если технические средства позволяют выполнить требования закона.
Усиленная квалицифированная подпись является разновидностью усиленных, она имеет сертификат от аккредитованного центра и создана с помощью подтвержденных ФСБ средств.
Простые и неквалифицированные подписи заменяют подписанный бумажный документ в случаях, оговоренных законом или по согласию сторон. Например, простые подписи могут использовать граждане для отправки сообщений органам власти. Усиленная подпись также может рассматриваться как аналог документа с печатью.
Квалифицированные подписи заменяют бумажные документы во всех случаях, за исключением тех, когда закон требует наличие исключительно документа на бумаге. Например, с помощью таких подписей граждане могут получать госуслуги в электронном виде, а органы государственной власти могут отправлять сообщения гражданам и взаимодействовать друг с другом через информационные системы. Ранее выданные сертификаты ЭЦП и подписанные с их помощью документы приравниваются к квалифицированным подписям.
Иностранные электронные подписи приравниваются в России к тем видам подписей, которым они соответствуют.
Простая электронная подпись, в отличие от прежней электронно-цифровой подписи, не предназначена для защиты документа от подделки. Она не позволяет обнаружить возможное искажение содержания документа. Единственная ее функция — подтверждение факта формирования электронной подписи (а не самого документа) определенным лицом.
Целям определения лица, подписавшего электронный документ, а также обнаружения факта внесения изменений в документ после его подписания служит усиленная электронная подпись. Именно эта подпись (в двух видах — неквалифицированная и квалифицированная) является аналогом прежней электронной цифровой подписи.
Поскольку простая электронная подпись требует использования кодов, паролей или иных средств, станет ясно, что можно считать электронной подписью, а что нет. Очевидно, что в случае электронного письма роль электронной подписи не может играть имя отправителя, вручную поставленное после текста, так как оно никак не зависит от пароля, используя который отправитель сформировал и отправил письмо. Информацией, указывающей на лицо, от имени которого был послан документ, может служить, вероятно, идентификатор сообщения в сочетании с IP-адресом компьютера отправителя, свидетельствующие о том, что сообщение было создано в результате доступа к почтовой системе, сопровождавшегося вводом пароля, принадлежащего определенному пользователю. Электронный адрес отправителя и имя отправителя можно считать подписью лишь в том случае, если оператор информационной системы обеспечивает их достоверность, ведь почтовый протокол позволяет указывать любое имя и любой обратный адрес, и некоторые почтовые системы не накладывают здесь никаких ограничений.
 
2. RSA как основа ЭЦП
В основе электронной подписи лежит криптография открытого ключа. С ее помощью формируется специальный сертификат пользователя. Он содержит данные о пользователе, открытый ключ и электронную подпись сертификата, ее можно проверить с помощью открытого ключа удостоверяющего центра. Алгоритм гарантирует, что произвести генерацию подписи может только удостоверяющий центр, который имеет секретный ключ шифрования и доверие к которому является основой для работы всей системы ЭЦП.
Доверие к удостоверяющим центрам основано на иерархическом принципе: сертификат удостоверяющего центра нижнего уровня заверяется электронной подписью удостоверяющего центра более высокого уровня. Высочайшим уровнем удостоверяющих центров является федеральный, который находится под управлением государственных органов. Вся система доверия, построенная на сертификатах, образует так называемую инфраструктуру открытых ключей (Public Key Infrastructure, PKI). При такой инфраструктуре требуется проверка не только легитимности ключа удостоверяющего центра, выдавшего сертификат, но и всех вышестоящих удостоверяющих центров. В частности, при формировании электронной транзакции необходимо проверить не только математическую корректность ЭЦП, но и валидность всей цепочки сертификатов, задействованных при изготовлении сертификата подписанта, на момент подписания им конкретного электронного документа.
Наибольшую популярность среди криптоалгоритмов цифровой подписи приобрела RSA (применяется при создании цифровых подписей с восстановлением документа).
Криптосистема RSA является одной из наиболее широко используемой асимметричной криптосистемой (криптосистемой открытого (public) ключа) и зачастую называется стандартом de facto. Вне зависимости от официальных стандартов, существование такого стандарта чрезвычайно важно для развития электронной коммерции и вообще экономики. Единая система открытого (public) ключа допускает обмен документами с электронно-цифровыми подписями между пользователями различных государств, использующими различное программное обеспечение на различных платформах; такая возможность насущно необходима для развития электронной коммерции. Распространение системы RSA дошло до такой степени, что ее учитывают при создании новых стандартов. При разработке стандартов цифровых подписей, в первую очередь в 1997 был разработан стандарт ANSI X9.30, поддерживающий Digital Signature Standard (стандарт Цифровой подписи). Годом позже был введен ANSI X9.31, в котором сделан акцент на цифровых подписях RSA, что отвечает фактически сложившейся ситуации, в частности – для финансовых учреждений.
До недавнего времени главным препятствием для замены бумажного документооборота электронным были недостатки защищенной аутентификации (установления подлинности); почти везде контракты, чеки, официальные письма, юридические документы все еще выполняются на бумаге.
Появление цифровой подписи на основе RSA сделало осуществление электронных операций достаточно безопасным и надёжным.
Алгоритм RSA предполагает, что посланное закодированное сообщение может быть прочитано адресатом и только им. В этом алгоритме используется два ключа – открытый и секретный. Данный алгоритм привлекателен также в случае, когда большое число субъектов (N) должно общаться по схеме все- со-всеми. В случае симметричной схемы шифрования каждый из субъектов каким-то образом должен доставить свои ключи всем остальным участникам обмена, при всём этом суммарное число используемых ключей будет достаточно велико при большом значении N. Применение асимметричного алгоритма требует лишь рассылки открытых ключей всеми участниками, суммарное число ключей равно N.
Сообщение представляется в виде числа M. Шифрование осуществляется с помощью общедоступной функции f(M), и только адресату известно, как выполнить операцию f-1. Адресат выбирает два больших простых (prime) числа p и q, которые делает секретными. Он объявляет n=pq и число d, c (d,p- 1)=(d,q-1)=1 (один из возможных способов выполнить это условие, выбрать d больше чем p/2 и q/2). Шифрование производится по формуле: f(M) є Md mod n, где M и f(M) оба Ј n-1. Как было показано, может быть вычислено за разумное время, даже если M, d и n содержит весьма большое число знаков. Адресат вычисляет M на основе Md, используя свое знание p и q. В соответствие со следствием 6, если dc є(p-1)1, тогда (Md)eє p1.
Исходный текст M получается адресатом из зашифрованного F(M) путем преобразования: M = (F(M))e (mod pq). Здесь как исходный текст, так и зашифрованный рассматриваются как длинные двоичные числа. Аналогично (Md)e є qM, если dc є (q-1)1. e удовлетворяет этим двум условиям, если cd є (p-1) (q-1)1. Теорема 1 гласит, что мы можем позволить e=x, когда x является решением уравнения dx + (p-1)(q-1)y = 1.
Так как (Md)e – M делимо на p и q, оно делимо и на pq, следовательно, мы можем определить M, зная Md, вычислив его значение в степени e и определив остаток от деления на pq. Для соблюдения секретности важно, чтобы, зная n, было нельзя вычислить p и q. Если n содержит 100 цифр, подбор шифра связан с перебором ~1050 комбинаций. Данная проблема изучается уже около 100 лет. RSA-алгоритм запатентован (20 сентября 1983, действовал до 2000 года).
Теоретически можно предположить, что возможно выполнение операции f-1, не вычисляя p и q. Но в любом случае задача эта не проста и разработчики считают ее трудно факторизуемой.
Предположим, что мы имеем зашифрованный текст f(M) и исходный текст M, и мы хотим найти значения p и q. Нетрудно показать, что таких исходных данных для решения задачи недостаточно – надо знать все возможные значения Mi.
Рассмотрим использование алгоритма RSA на конкретном примере. Выбираем два простые числа p=7; q=17 (на практике эти числа во много раз длиннее). В этом случае n = p*q будет равно 119. Теперь необходимо выбрать e, выбираем e=5. Следующий шаг связан с формированием числа d так, чтобы d*e=1 mod [(p-1)(q-1)]. d=77 (использован расширенный алгоритм Эвклида). d – секретный ключ, а e и n характеризуют открытый ключ. Пусть текст, который нам нужно зашифровать, представляется M=19. С = Memod n. Получаем зашифрованный текст C=66. Этот "текст" может быть послан соответствующему адресату. Получатель дешифрует полученное сообщение, используя М= Cdmod n и C=66. В результате получается M=19.
 
На практике общедоступные ключи могут помещаться в специальную базу данных. При необходимости послать партнеру зашифрованное сообщение можно сделать сначала запрос его открытого ключа. Получив его, можно запустить программу шифрации, а результат ее работы послать адресату. 
Возможно ли взломать ЭЦП?
Взлом ЭЦП фактически сводится ко взлому алгоритма шифрования. В данном случае возможные варианты взлома мы рассмотрим на примере алгоритма RSA.
Существует несколько способов взлома RSA. Наиболее эффективная атака – найти секретный ключ, соответствующий необходимому открытому ключу. Это позволит нападающему читать все сообщения, зашифрованные открытым ключом, и подделывать подписи. Такую атаку можно провести, найдя главные сомножители (факторы) общего модуля n – p и q. На основании p, q и e (общий показатель) нападающий может легко вычислить частный показатель d. Основная сложность в поиске главных сомножителей (факторинг) n. Безопасность RSA зависит от разложения на сомножители (факторинга), что является трудной задачей, не имеющей эффективных способов решения.
Фактически, задача восстановления секретного ключа эквивалентна задаче разложения на множители (факторинга) модуля: можно использовать d для поиска сомножителей n и наоборот – можно использовать n для поиска d. Надо отметить, что усовершенствование вычислительного оборудования само по себе не уменьшит стойкость криптосистемы RSA, если ключи будут иметь достаточную длину. Фактически же совершенствование оборудования увеличивает стойкость криптосистемы.
Другой способ взломать RSA состоит в том, чтобы найти метод вычисления корня степени e из mod n. Поскольку С = Me mod n, то корнем степени e из mod n является сообщение M. Вычислив корень, можно вскрыть зашифрованные сообщения и подделывать подписи, даже не зная частный ключ. Такая атака не эквивалентна факторингу, но сегодня неизвестны методы, которые позволяют взломать RSA таким образом. При этом в особых случаях, когда на основе одного и того же показателя относительно небольшой величины шифруется достаточно много связанных сообщений, есть возможность вскрыть сообщения. Упомянутые атаки – единственные способы расшифровать все сообщения, зашифрованные данным ключом RSA.
Существуют и другие типы атак, позволяющие, однако, расшифровать только одно сообщение и не позволяющие нападающему вскрыть прочие сообщения, зашифрованные тем же ключом. Также изучалась возможность расшифровывания части зашифрованного сообщения.
Самое простое нападение на отдельное сообщение – атака по предполагаемому открытому тексту. Нападающий, имея зашифрованный текст, предполагает, что сообщение содержит какой-то определенный текст (например, "Штирлиц – Плейшнеру"), затем шифрует предполагаемый текст открытым ключом получателя и сравнивает полученный текст с имеющимся зашифрованным текстом. Такую атаку можно предотвратить, добавив в конец сообщения несколько случайных битов. Другая атака на единственное сообщение применяется в том случае, если отправитель посылает одно и то же сообщение M трем корреспондентам, каждый из которых использует общий показатель e = 3. Зная это, нападающий может перехватить эти сообщения и расшифровать сообщение M.
Такую атаку можно предотвратить, вводя перед каждым шифрованием в сообщение несколько случайных битов. Также существуют несколько атак по зашифрованному тексту (или атаки отдельных сообщений с целью подделки подписи), при которых нападающий создает некоторый зашифрованный текст и получает соответствующий открытый текст, например, заставляя обманным путем зарегистрированного пользователя расшифровать поддельное сообщение. Разумеется, существуют и атаки, нацеленные не на криптосистему непосредственно, а на уязвимые места всей системы коммуникаций в целом. Такие атаки не могут рассматриваться как взлом RSA, так как говорят не о слабости алгоритма RSA, а скорее об уязвимости конкретной реализации. Например, нападающий может завладеть секретным ключом, если тот хранится без должной предосторожности. Необходимо подчеркнуть, что для полной защиты недостаточно защитить выполнение алгоритма RSA и принять меры математической безопасности, т.е. использовать ключ достаточной длины, так как на практике наибольший успех имеют атаки на незащищенные этапы управления ключами системы RSA.
 
Заключение
Итак, электронная цифровая подпись предназначена для защиты электронного документа, передаваемого посредством различных сред или хранящегося в цифровом виде, от подделки и является атрибутом электронного документа. Она получается в результате криптографического преобразования информации с использованием закрытого ключа электронной цифровой подписи и позволяет идентифицировать владельца сертификата ключа подписи, установить отсутствие искажения информации в электронном документе.
В основе электронной подписи лежит криптография открытого ключа. С ее помощью формируется специальный сертификат пользователя. Он содержит данные о пользователе, открытый ключ и электронную подпись сертификата, ее можно проверить с помощью открытого ключа удостоверяющего центра. Алгоритм гарантирует, что произвести генерацию подписи может только удостоверяющий центр, который имеет секретный ключ шифрования и доверие к которому является основой для работы всей системы ЭЦП. Наибольшую популярность среди криптоалгоритмов цифровой подписи приобрела RSA. Также она используется в открытой системе шифрования PGP и иных системах шифрования в сочетании с симметричными алгоритмами.
1. Федеральный закон от 06.04.2011 N 63-ФЗ (ред. от 28.06.2014) "Об электронной подписи" // ИПС Консультант Плюс
2. Агапов, А. В. Обработка и обеспечение безопасности электронных данных [Электронный ресурс] : учеб. пособие / А. В. Агапов, Т. В. Алексеева, А. В. Васильев и др.; под ред. Д. В. Денисова. - М.: МФПУ Синергия, 2013. - 592 с.
3. Куняев, Н. Н. Конфиденциальное делопроизводство и защищенный электронный документооборот [Электронный ресурс] : учебник / Н. Н. Куняев, А. С. Дёмушкин, А. Г. Фабричнов; под общ. ред. Н. Н. Куняева. - М.: Логос, 2014. - 452 с.
4. Молдовян Н.А. Теоретический минимум и алгоритмы цифровой подписи. - СПб.: БХВ-Петербург, 2014. - 293 с.
5. Электронный документооборот. Термины и определения: Учебное пособие / С.Ю. Кабашов. - М.: НИЦ ИНФРА-М, 2013. - 320 с
6. Электронная подпись и шифрование // www.security.ru/el.wright.html


Похожие работы:

Воспользоваться поиском



Скачать работу: Сущность и преимущества электронной цифровой подписи. RSA как основа ЭЦП, 2017 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Разное